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Abstract

This paper deals with the convergence of series expansions of trajectories for semi-linear infinite dimensional systems, which are

analytic in state and affine in input. A special case of such expansions corresponds to Volterra series which are extensively used

for the analysis, the simulation and the control of weakly nonlinear finite dimensional systems. The main results of this paper give

computable bounds for both the convergence radius and the truncation error of the series. These results can be used for model

simplification and analytic approximation of trajectories with a guaranteed quality. They are available for distributed and boundary

control systems. As an illustration, these results are applied to an epidemic population dynamic model. In this example, it is shown

that the truncation of the series at order 2 yields an accurate analytic approximation which can be used for time simulation and

control issues. The relevance of the method is illustrated by simulations.

Keywords: Nonlinear systems, perturbation analysis, partial differential equations, Volterra series expansions, convergence

domain

1. Introduction

This paper addresses the representation of nonlinear systems

as a series expansion of linear systems with nonlinear intercon-

nections. It investigates on the well-posedness of such series,

the accuracy of truncated sums and their use for application is-

sues.

Such representations were first proposed for finite dimen-

sional systems by Vito Volterra [1] who introduced the series

named after him. There exists a vast literature concerning

Volterra series. Among others, they were studied in [2, 3, 4, 5]

from the geometric control point of view, and in [6, 7, 8] from

the input-output representation and realization point of view.

For linear analytic finite dimensional systems, they correspond

to the Taylor series of Frechet derivatives of the input-to-output

operator (see [3] and references therein).

Truncated Volterra series (or their low-order optimized ap-

proximations [9, 10]) are very convenient for the modeling,

identification, model order reduction and real-time simulation

of weakly nonlinear systems. This is why they are widely

used in signal processing, control, electronics, electromag-

netic waves, mechanics, acoustics, bio-medical engineering,

etc. However, only a few results about the convergence and

truncation error bound are available. The existence of a non

zero convergence radius for complex linear analytic finite di-

mensional systems with zero initial conditions has been proved

in [11]. Other theoretical and local-in-time results are known

(see e.g. [5, 12]). Results on fading memory have been investi-

gated in [13]. More recent results have been obtained in [14, 15]
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for the frequency domain, in [16] based on regular perturba-

tions, and in [17] for interconnected systems defined by Fliess

series [4]. Computable convergence bounds have also been es-

tablished for finite dimensional linear-analytic systems in [18].

Here, we address the series representation and the conver-

gence characterization problem for a general class of semi-

linear systems, which are analytic in state, affine in input and

infinite dimensional. This includes distributed and boundary

control systems. We obtain sufficient conditions on both the in-

put and initial condition, under which the series is convergent.

Moreover, we give an estimate of the error on trajectories, when

approximating the original system by the truncated series.

The paper is organized as follows. Section 2 describes the

class of systems under consideration and the proposed series

expansion. The main results of the paper, that is the conver-

gence and truncation error bounds of the series expansion, are

detailed in section 3 and proved in section 4. Section 5 points

out some additional properties and possible refinements. These

results are illustrated on a nonlinear epidemic model in sec-

tion 6, for which a simplified approximating model is derived.

2. Systems under consideration

The following notations and functional setting are intro-

duced:

• T denotes the time interval [0,T ] with T > 0 or R+.

• U and X are Banach spaces on the field R.

• L(U,X) and L(X) are the sets of bounded linear operators

from U to X, and from X to X, respectively.
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• MLk(X,X) (k ≥ 2) is the set of bounded multilinear

operators from X × · · · × X︸        ︷︷        ︸
k

to X, with norm ‖E‖ =

sup
(x1,...,xk)∈Xk

‖x1‖=···=‖xk‖=1

‖E(x1, . . . , xk)‖X.

• MLk,1(X,U,X) (k ≥ 1) is the set of bounded multilinear

operators from X × · · · × X︸        ︷︷        ︸
k

×U to X, with norm ‖E‖ =

sup
(x1,...,xk ,u)∈Xk×U
‖x1‖=···=‖xk‖=‖u‖=1

‖E(x1, . . . , xk, u)‖X.

• U = L∞(T,U) and X = L∞(T,X) are standard Lebesgue

spaces.

We consider the class of infinite-dimensional nonlinear control

systems on X, having an equilibrium state (shifted to zero with-

out loss of generality), governed by

ẋ = L(x, u) + P(x) + Q(x, u), for t ∈ T, (1)

x(0) = xini ∈ X. (2)

The notation L(x, u) stands for the linear part of the system. We

assume that the linearized system

ẋ1 = L(x1, u), x1(0) = xini ∈ X, (3)

is a distributed or boundary control system in the sense of [19].

This implies that A = L(., 0) generates a strongly continuous

semigroup on X, denoted V , with α ∈ R and β > 0 such that for

all t ∈ T, ‖V(t)‖ ≤ βeαt. The growth bound α is assumed to be

strictly negative if T = R+.

Moreover, the linearized system (3) is assumed to be well-

posed, that is, for all u ∈ U and xini ∈ X, (3) has a unique

mild solution x1 ∈ X. P and Q are nonlinear terms such that

P(x) =

+∞∑

k=2

Ak(x, . . . , x︸  ︷︷  ︸
k

), (4)

Q(x, u) =

+∞∑

k=2

Bk(x, . . . , x︸  ︷︷  ︸
k−1

, u), (5)

where Ak ∈ MLk(X,X) and Bk ∈ MLk−1,1
(
X,U,X

)
are multi-

linear bounded operators. The complex functions

a : z 7−→
+∞∑

k=2

‖Ak‖ zk, b : z 7−→
+∞∑

k=2

‖Bk‖ zk, (6)

are assumed to be analytic at z = 0.

A series expansion of the trajectories of (1)-(2) is defined in the

following way. For all m ≥ 2, xm is the mild solution of

ẋm = Axm + χm, xm(0) = 0, (7)

where χm(τ) =

m∑

k=2

∑

p∈Mk
m

Ak

(
xp1 (τ), . . . , xpk (τ)

)

+

m∑

k=2

∑
{
q∈M

k
m

qk =1

Bk(xq1 (τ), . . . , xqk−1 (τ), u(τ)
)
, (8)

where M
K
m is defined for all m ∈ N

∗ and K ∈ N
∗ by

M
K
m =

{
p ∈ (N∗)K

∣∣∣ p1 + · · · + pK = m
}
.

As a well known result [19, 20], we have

xm(t) =

∫ t

0

V(t − τ)χm(τ) dτ. (9)

The series expansion of the trajectories is

x(t) =

+∞∑

m=0

xm(t). (10)

It provides a formal solution of (1)-(2).

In the case of finite dimensional linear analytic systems with

zero initial conditions, the semigroup associated with the lin-

earized system is V(t) = eAt, the solution x1 is the convolu-

tion of the input by the impulse response matrix VB. More-

over, (9) corresponds to a multiple convolution (of order m) by

a multi-variate kernel and (10) exactly coincides with a stan-

dard Volterra series expansion (see e.g. [1, 6, 21]). It is shown

in [3] that for such systems, this expansion is indeed the Taylor

series of Frechet derivatives of the input-to-state operator.

A realization of the partial sum of order three of (10) is dis-

played in figure 1. Each term is built as a cascade of lin-

ear systems (lin, V) and static nonlinear interconnections (Ak,

Bk), which provides an easily implementable simplified model.

Moreover, this realization is directly expressed in terms of the

original system parameters, which constitutes an appealing fea-

ture for design issues and physical interpretations.

From a general point of view, approximations by low-order

truncated Taylor series are well-adapted to “weakly nonlinear

systems for sufficiently small inputs”: section 3 provides quan-

titative assessment criteria for this statement, based on the sys-

tem parameters. More precisely, we establish (i) a guaranteed

convergence domain of (10) with respect to the input and the

initial conditions, and (ii) an estimate of the remainder with re-

spect to the tuncation order.

For applications requiring a low-order approximation even for

large inputs, optimal approximations may be preferred to trun-

cation. Although this is beyond the scope of this paper, re-

sults (i-ii) can still be helpful in this case. Indeed, result (i)

provides a range over which optimal approximations defined

in e.g. [9, 10] are guaranteed to make sense. Moreover, re-

sult (ii) provides a guaranteed estimate to which the optimal

approximation error can be compared.

3. Main results

Our first main result is a sufficient condition on xini and u

for the convergence of the series (10), for which we need to

introduce the following definitions.

For all t ∈ T, we set

f (t) = max

[
sup{

k ≥ 2 s.t.

‖Ak‖ , 0

‖V(t) Ak‖
‖Ak‖

, sup{
k ≥ 2 s.t.

‖Bk‖ , 0

‖V(t) Bk‖
‖Bk‖

]
.
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Figure 1: Realization of the first three terms of the series expansion (10). For

n = 1, lin denotes a realization of the linearized system.

By construction, f is bounded by t 7→ βeαt. Hence, we can

define γ⋆ and choose γ such that

γ ≥ γ⋆ =
∫

T

f (t) dt. (11)

For all ω ≥ 0, function Fω is defined on C by

Fω(z) =
z + γω b(z)

z − γ a(z) . (12)

¿From lemma 2-i in section 4.2, Fω is analytic with conver-

gence radius r ∈ R
∗
+ ∪ {+∞} at z = 0. ¿From 2-ii, the character-

istic equation

x F′ω(x) − Fω(x) = 0 (13)

has at most one solution in ]0, r[. If it has one solution, denoted

σω, we define ρω > 0 as

ρω =
σω

Fω(σω)
, (case 1), (14)

otherwise, we set

ρω = lim
x→r−

x

Fω(x)
, (case 2). (15)

¿From 2-iii, there exists a unique function z 7→ Φω(z) analytic
at z = 0 and such that Φω(z) = z Fω

(
Φω(z)

)
, whose convergence

radius is bounded from below by ρω.

Now, defining δQ = 0 if Q = 0 in (1) and δQ = 1 otherwise,

we are in position to state our first main result.

Theorem 1 (Convergence criterion). Let ω ∈ R+, xini ∈ X and

u ∈ U be such that

δQ‖u‖U ≤ ω ‖x1‖X and ‖x1‖X < ρω. (16)

Then, the series x =
∑

m∈N∗
xm converges in norm in X and

∥∥∥x
∥∥∥X ≤ Φω

(‖x1‖X
)
.

Our second main result is a guaranteed bound for the trunca-

tion error of the series.

Theorem 2 (Remainder estimates). Let ω ≥ 0 and M ∈ N
∗.

Let the remainder function be defined on
{
z ∈ C s.t. |z| < ρω} by

RMΦω(z) =

+∞∑

m=M+1

ϕm(ω) z
m = Φω(z) −

M∑

m=1

ϕm(ω) z
m, (17)

where ϕm(ω) is the Taylor coefficient of order m of Φω. Then,

for all (u, xini) ∈ U × X satisfying (16),

∥∥∥∥x −
M∑

m=1

xm

∥∥∥∥X ≤ RMΦω
(‖x1‖X

)
< +∞. (18)

The general principle of the proof is based on three key steps.

First, we derive a majorizing series of (10) under the form of

a power series of ‖x1‖X. Second, we exhibit an appropriate

functional equation satisfied by the power series. Third, we

relate the functional equation satisfied by the power series to

the asymptotic behavior of its coefficients, providing its con-

vergence radius. This is done using standard tools of combi-

natorial analysis and more particularly the singular inversion

theorem (see e.g. [22]). The resulting convergence bound and

remainder estimate constitute the desired results.

This framework can be adapted to particular situations (see

section 5) but the key steps remain the same.

4. Proof of main results

4.1. Proof of theorems 1-2

The three steps of the proof are detailed below.

Step 1: majorizing series. Let ω≥0. Define ϕ1(ω)=1 and, for

m≥2,

ϕm(ω)=γ

m∑

k=2

[
‖Ak‖

∑

p∈Mk
m

k∏

i=1

ϕpi (ω)+ω ‖Bk‖
∑

{
q∈M

k
m

qk =1

k−1∏

i=1

ϕqi (ω)

]
. (19)

Then, for all (u, xini) ∈ U × X, ‖x1‖X = ϕ1(ω) ‖x1‖X and, by

induction from lemma 1 below,

∀m ≥ 2, ‖xm‖X ≤ ϕm(ω) ‖x1‖mX. (20)

Hence, introducing the generating function Φω(X) =∑

n∈N∗
ϕm(ω)X

m, it follows that Φω
(‖x1‖

)
is a majorizing series of

∑
m∈N∗ xm.

Step 2: functional equation. We proceed by noticing that

γ

(
a
(
Φω(X)

)
+ ω X

b
(
Φω(X)

)

Φω(X)

)

= γ


+∞∑

k=2

‖Ak‖
(
Φω(X)

)k
+ ω X

+∞∑

k=2

‖Bk‖
(
Φω(X)

)k−1


= γ

+∞∑

m=2

Xm

( m∑

k=2

‖Ak‖
∑

p∈Mk
m

k∏

i=1

ϕpi(ω) + ω ‖Bk‖
∑

{
q∈M

k
m

qk =1

k−1∏

i=1

ϕqi (ω)

)

=

+∞∑

m=2

Xmϕm(ω) = Φω(X) − X,

leading to Φω(X) = X Fω
(
Φω(X)

)
.

Step 3: asymptotic estimates. ¿From lemma 2-iii, Φω is the

unique solution of this equation that is analytic in the open disk

with radius ρω. So, if ‖x1‖X < ρω, the series
∑

m∈N∗ ϕm(ω) ‖x1‖mX
3



converges. This proves that
∑

m∈N∗ xm converges in norm and is

bounded by Φω
(‖x1‖X

)
.

Finally, theorem 2 is an immediate consequence of theorem 1

and (20). This concludes the proof.

4.2. Technical lemmas

The estimate (20) of ‖xm‖X used in the proof is a consequence
of the the following lemma.

Lemma 1 (Regularity and norm estimates). Let (u, xini) ∈ U ×
X. Then, for all m ≥ 2, xm belongs to C0(T,X) ∩ X and

‖xm‖X ≤ γ
m∑

k=2

[
‖Ak‖

∑

p∈Mk
m

k∏

i=1

‖xpi‖X

+ ‖Bk‖
∑

{
q∈M

k
m

qk =1

( k−1∏

i=1

‖xqi‖X
)
‖u‖U

]
. (21)

Proof. By assumption, x1 ∈ X. Let m ≥ 2 and assume that for

1 ≤ m′ ≤ m − 1, xm′ ∈ X. Then χm ∈ X and xm belongs to

C0(T,X). From (8), (9) and (11), for all t ∈ T,

∫ t

0

‖V(t − τ) χm(τ)‖X dτ ≤
m∑

k=2

γ

[
‖Ak‖

∑

p∈Mk
m

k∏

i=1

‖xpi‖X

+ ‖Bk‖
∑

{
q∈M

k
m

qk =1

( k−1∏

i=1

‖xqi‖X
)
‖u‖U

]
,

This proves by induction that for all m ≥ 1, xm ∈ X. Moreover,

for all m ≥ 2, (21) holds.

The tools from combinatorial analysis used in the proof (third

part of section 4.1) are summarized below.

Lemma 2. Let A(X) =

+∞∑

k=1

αkX
k and B(X) =

+∞∑

k=1

βkX
k be ana-

lytic functions at X = 0 with non-negative coefficients. Define

F(X) =
1 + B(X)

1 − A(X)
and let r ∈ R

∗
+ ∪ {+∞} be the radius of con-

vergence of F at x = 0. Then, the following results hold:

(i) At x = 0, F is nonzero and analytic with nonnegative Tay-

lor coefficients.

(ii) Equation x F′(x) − F(x) = 0 has either one solution de-

noted σ (case 1) or zero solution (case 2), in ]0, r[.

(iii) There exists a unique function z 7→Φ(z), analytic at z = 0
such that Φ(z) = z F

(
Φ(z)

)
. Its convergence radius ρ at

z=0 is such that

(case 1) ρ =
σ

F(σ)
, (22)

(case 2) ρ ≥ lim
x→r−

x

F(x)
. (23)

Proof. Assertion (i): If A = 0, (i) is straightforward. Other-

wise, A has at least one positive Taylor coefficients so that, for

all z ∈ C such that |z| < r, |A(z)| ≤ A
(|z|) < limx→r− A(x) ≤ 1

and F(z) =
(
1 + B(z)

) ∑+∞
n=0

(
A(z)

)n
, which proves (i).

Assertion (ii): Define H(x) = x F′(x) − F(x) for x ∈ [0, r[.

If F is affine then H(x) = −1 so that x F′(x) − F(x) = 0 has

no solution. Otherwise, H is a strictly increasing function on

]0, r[ from H(0) < 0 to ℓ = limx→r− H(x) ∈ R ∪ {+∞} since for
all x ∈]0, r[, H′(x) = x F′′(x) > 0. Therefore, if ℓ > 0, then

x F′(x) − F(x) = 0 has a unique solution on [0, r[ (case 1), oth-

erwise (ℓ ≤ 0), it has no solution (case 2).

Assertion (iii): In case 1, the hypotheses of the singular in-

version theorem (see e.g. proposition IV.5. and theorem VI.6.

in [22]) are met, and its application proves (iii). In case 2, (iii)

is a direct consequence of the analytic inversion lemma (see e.g.

lemma 4.2. in [22]).

5. Additional results and refinements

5.1. Parameter ω

The influence of parameter ω in theorem 1 can be further

investigated. This parameter accounts for the effect of the (input

dependent) term Q in the system dynamics.

If δQ=0, then ρω = ρ0 does not depend on ω. Otherwise, the

following proposition holds.

Proposition 1. If Q , 0, function ω 7→ ρω is strictly decreas-

ing.

Proof. The result is straightforward in case 2 (see (15)) since

r does not depend on ω and b is positive. In case 1, denoting

ρ(ω) = ρω and σ(ω) = σω, we have

ρ′(ω) = − σ′(ω)

Fω
(
σ(ω)

)2
[
σ(ω)F′ω

(
σ(ω)

) − Fω
(
σ(ω)

)]

− σ(ω)

Fω
(
σ(ω)

)2 [∂ωFω]
(
σ(ω)

)
.

The first term is zero from (13) and because
σ′(ω)

Fω

(
σ(ω)

)2 is fi-

nite. Indeed, 1 < Fω
(
σ(ω)

)
< +∞ since 0 < σ(ω) < r,(

1 − γ a(σ(ω))/σ(ω)
)−1
> 1 and 1 + γω b

(
σ(ω)

)
/σ(ω) ≥ 1.

Moreover, σ′(ω) =
[∂ωFω]

(
σ(ω)

)
−σ(ω) [∂ωF′ω]

(
σ(ω)

)

σ(ω) F′′ω
(
σ(ω)

) is finite since

z 7→ Fω(z) is non-affine with positive Taylor coefficients in

case 1 (see lemma 2).

The second term is strictly negative since σ(ω) > 0 and for

all z > 0, ∂ωFω(z) =
γ b(z)

z−γa(z) ≥
γb(z)

z
>
γb(z)

z

∣∣∣∣
z=0
= 0, which

concludes the proof.

5.2. Bound tightness

Another issue is the tightness of the convergence and trunca-

tion error bounds given in theorems 1-2. We do not expect these

bounds to be optimal in general, since the estimate in lemma 1

can be rather coarse.

For instance, for the system ẋ = a2x
2, x(0) = x0, a2 > 0,

on T = [0,T ] (example 1), we get Fω(z) = 1/(1 − Ta2z)
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and ρω = 1/(4Ta2). For ẋ = b2xu, x(0) = 0, b2 > 0 on

T = [0,T ] (example 2), we get Fω(z) = 1 + ωTb2z and

ρω = 1/(ωTb2). In both cases, a direct computation of the

series expansion and its convergence radius shows that the con-

vergence bound in theorem 1 is underestimated. However, for

system ẋ = αx + u + a2x
2, x(0) = 0, this bound is optimal [23].

This bound was also tested on a Euler-Bernoulli beam with a

higher order nonlinearity (order three): it reveals to be accu-

rate [24].

As mentioned in section 3, it is possible to improve the

bounds given in theorems 1-2 in particular situations. As an

example, we show how this can be done for quadratic-bilinear

systems on a finite time horizon, namely systems for which

P(x) = A2(x, x), Q(x, u) = B2(x, u) and T = [0,T ].

For these systems, a simple but useful refinement of theo-

rem 2 is given below. It used in section 6.

Proposition 2. Consider a quadratic-bilinear system with in-

put and initial condition such that theorems 1 and 2 apply. As-

sume that we can find κ ≤ 1 such that

‖x2‖X ≤ κ ϕ2 ‖x1‖2X. (24)

Then, for all M ≥ 2,
∥∥∥∥x −

∑M
m=1 xm

∥∥∥∥X ≤ κRMΦω
(‖x1‖X

)
.

Proof. Since the system is quadratic, a straightforward induc-

tion shows that ‖xm‖X ≤ κϕm‖x1‖mX hold for all m ≥ 2. Hence

(1− κ)z+ κΦ(z) is a dominating series of
∑

m≥1 xm and the result

follows.

To improve the convergence bound in theorem 1, we intro-

duce KT =βT max(1, eαT ) and define, for ω ∈ R+,

Φ̃ω(X) =
X eKTωb2X

1 − a2 1−e
KT ωb2 X

ωb2

, ρ̃ω =
ln

(
1+ ωb2

a2

)

KTωb2
, if δQ,0, (25)

Φ̃(X) =
X

1 − KT a2 X
, ρ̃ =

1

KTa2
, otherwise, (26)

where a2=‖A2‖, b2=‖B2‖. Then the following holds.

Proposition 3. Let (u, xini) ∈ U × X be such that δQ‖u‖U ≤
ω ‖x1‖X. A sufficient condition for the series x =

∑
m∈N∗ xm to

converge in norm in X is ‖x1‖X < ρ̃ω. Moreover, the truncation

error of order M > 0 is bounded in X by RMΦ̃ω
(‖x1‖X

)
.

Proof. We use the same key steps as for theorem 1, with differ-

ent estimates.

Step 1: majorizing series. By definition, ‖S (t)‖ ≤ KT /T for all

t ∈ T. Let us set ϕ̃1(ω) = 1 and

ϕ̃m(ω) =
KT

m − 1

[
a2

m−1∑

j=1

ϕ̃ j(ω)ϕ̃m− j(ω) + ωb2 ϕ̃m−1(ω)
]
, (27)

whereω is omitted in the sequel. We prove by induction that for

all m ∈ N and for all t ∈ T, ‖xm(t)‖X ≤ ϕ̃m‖x1‖mX (t/T )
m−1. The

claim is true for m = 1. For m > 1, if it holds for all m′ < m,

we have for all t ∈ T,

‖xm(t)‖X ≤
∫ t

0

‖S (t − τ)‖ ‖χm(τ)‖X dτ

≤
∫ t

0

‖S (t − τ)‖
[
a2

m−1∑

j=1

‖x j(τ)‖X ‖xm− j(τ)‖X

+b2‖xm−1‖X ‖u‖U
]
dτ,

≤ KT

T
‖x1‖mX

[
a2

m−1∑

j=1

ϕ̃ jϕ̃m− j + ωb2 ϕ̃m−1

] ∫ t

0

(
τ

T

)m−2
dτ

≤ ϕ̃m ‖x1‖mX
(
t

T

)m−1
,

which proves the induction.

Step 2: equation. From (27), a straightforward computation

shows thatΨ(X)=
∑

m∈N∗ ϕ̃mX
m−1 satisfies a differential (instead

of functional) equation

dΨ/dX = KTa2Ψ
2 + KTωb2Ψ with Ψ(0) = 1.

Step 3: estimates. Solving this differential equation shows that

XΨ(X) =
∑

m∈N∗ ϕ̃mX
m coincides with Φ̃ω(X) given in (25). So,

the majorizing series Φ̃ω converges provided that ‖x1‖X is less

than ρ̃ω, which concludes the proof.

Obviously, the best results obtained from theorems 1-2

(ρω,Φω) or proposition 3 (ρ̃ω, Φ̃ω) can be chosen for each value

of ‖x1‖X. Table 1 displays some comparison for examples 1 and

2: here, proposition 3 provides better results (optimal for these

examples), but this is not true in general.

Example 1 Example 2

ẋ = a2x
2 (a2 > 0) ẋ = b2xu (b2 > 0)

ρω 1/(4Ta2) 1/(ωTb2)

Φω 2ρ
(
1 −

√
1 − X/ρ

)
X/

(
1 − X/ρω

)

ρ̃ω 1/(Ta2) = 4ρ +∞
Φ̃ω X/

(
1 − X/ρ̃

)
X exp

(
X/ρ̃ω

)

re
m
ai
n
d
er
s
R
M
φ
an
d
R
M
φ̃
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10
2
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10
−4

10
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10
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X

RMφ
RMφ̃
M = 0
M = 1
M = 2

Table 1: Comparison between results of theorems 1-2 (RMΦ: solid lines) and

proposition 3 (RMΦ̃, dotted lines). Illustrations are given for log-scales and

ρω=1.

6. Application to an epidemic model in a flock

6.1. Problem description

We consider a model of an epidemic spread in a flock

(see [25] for a detailed description). The disease is character-

ized by a long and variable incubation period, during which in-

dividuals are infectious but cannot be detected. The flock pop-

ulation (assumed to be perfectly mixed) is described by pop-

ulation densities structured with respect to status (susceptible

5



S , infected I), age (a ∈ [0, Ā]) and, for infected animals, with

respect to infection load (θ ∈ [0, 1]). Newly infected individ-

uals are distributed along θ according to a probability density

function Θ with support [0, 1]. The load then grows exponen-

tially with time during the incubation period, which ends when

θ reaches 1. Infected individuals for which θ = 1 show de-

tectable clinical signs and are removed from the flock. The

population densities S (t, a) and I(t, a, θ) are positive functions,

governed by the following system of transport-reaction integro-

differential PDE, for all (a, θ) ∈ [0, Ā]×[0, 1] and t ∈ T = [0,T ],

∂tS + ∂aS + µ S = −δK(I) S , (28)

∂tI + ∂aI + ∂θ(c θ I) + µ I = δΘ(θ)K(I) S , (29)

where K(I)(t) =
∫ Ā

0

∫ 1

0
I(t, a, θ) dθ da denotes the total number

of infected individuals at time t. Positive parameters µ, δ, and

c respectively denote the basic mortality rate, the transmission

rate, and the infection load growth rate. The boundary condi-

tions are S (t, a = 0) = b(t) and I(t, a = 0, θ) = I(t, a, θ = 0) = 0,

where the (positive) birth inflow b defines the input of the sys-

tem. This means that the new born are susceptible, and that

infection occurs after birth.

The issue here is to derive a simplified, easily tractable model

for flock management policy design.

6.2. Linearized problem and well-posedness

The linearized problem defines a decoupled boundary control

system with input u=b, state x= (S , I)T, for U=R and

X=L1
(
0, Ā

)
×L1

((
0, Ā

)×(0, 1)
)
with

∥∥∥(S , I)T
∥∥∥

X
=

√
‖S ‖2

1
+ ‖I‖2

1
.

The associated strongly continuous semigroup on X is given by

V(t)

(
S

I

)
=

(
VS (t) 0

0 VI(t)

) (
S

I

)
,

where, denoting h+ the Heaviside function,

[
VS (t) S

]
(a) = S (a − t) e−µt h+(a − t), (30)

[
VI(t) I

]
(a, θ) = I(a − t, e−ctθ) e−(µ+c)t h+(a − t). (31)

For all t ∈ [0,T ], ‖V(t)‖L =
√
‖VS (t)‖21 + ‖VI(t)‖21 ≤ e−µt so

that α = −µ and β = 1. The mild solution x1 = (S 1, I1)
T of the

linearized problem with initial condition xini= (S 0, I0)
T ∈X is

S 1(t, a) = S 0(a − t)e−µth+(a − t) + b(t − a)e−µah+(t − a), (32)
I1(t, a, θ) = I0(a − t, e−ctθ)e−(µ+c)th+(a − t). (33)

Obviously, if b∈U, then x1 is in X ∩C0(T,X).

6.3. Nonlinear system and bound estimates

The system is quadratic, with P(x) = A2(x, x) and Q = 0,

where for all x= (S , I)T and x′ = (S ′, I′)T in X,

A2(x, x
′) =
δ

2

(
−K(I) S ′ − K(I′) S(
K(I) S ′ + K(I′) S

)
Θ

)
.

It follows that a2=‖A2‖=δ/
√
2 and b2=0. The computation of

γ⋆ in (11) provides

γ = γ⋆ =
1
√
2

∫

T

e−µt
√
1 +CΘ(e−ct)2 dt,

where CΘ is the cumulative density function of Θ. Then the

convergence results of theorem 1 and proposition 3 correspond

to Φω(X)=2ρ
(
1 −

√
1 − X/ρ

)
and Φ̃ω(X)=X/(1 − X/ρ̃) where

ρ = 1/(4γa2) and ρ̃ = 1/(Ta2).

This makes ρ̃ a better bound than ρ as long as T < 4γ and a

worse one otherwise.

In order to compute the truncation error bound we set

r = max
t∈T
‖S 1(t)‖1/‖x1‖X, κS = min(t, Ā),

r′ = max
t∈T
‖I1(t)‖1/‖x1‖X, κI =

∫ min(t,Ā)

0

CΘ(e
−cs)ds.

Equation (30) yields ‖S 1(t)‖1‖I1(t)‖1 ≤ e−µtrr′‖x1‖2X so that,

from the definition of S 2 and I2, we obtain

‖S 2(t)‖1 ≤ δκS e−µt r r′‖x1‖2X, (34)

‖I2(t)‖1 ≤ δκIe−µt r r′‖x1‖2X. (35)

Therefore, for all t ∈ T, ‖x2(t)‖1 ≤ κ ϕ2‖x1‖2X with

κ = min

(
1,
√
2rr′

(
max
t∈T

e−µt
√
κ2
S
+ κ2

I

)
/γ

)
.

Finally, from proposition 2, the error bound of the series

truncated at order M is given by κRMΦ(‖x1‖X). In addi-

tion, the truncation error on I is shown to be bounded by

(γI/γ) κRMΦ(‖x1‖X), where γI = 1√
2

∫
T
e−µtCΘ(e

−ct) dt.

6.4. Numerical simulations

We consider an initial population size of 600 animals, among

which 60 are infected. The basic mortality rate is µ = 0.5 and

the infection load growth rate is c = 1. The initial density

of susceptible is the steady state distribution of the linearized

problem. The initial infected density is a peak, with support

[0.25, 2.25] × [e−2.5, e−1.5], described by

I0(a, θ) = −
C

θ
(ln(θ) + 1.5)(ln(θ) + 2.5)(a − 0.25)(2.25 − a),

where C is computed so that the initial number of infected ani-

mals is 60. The initial infection load distribution is

Θ(θ) =
1

ναΓ(α)
(− ln(θ))α−1θ1/ν−1,

with α = 32 and ν = 1/16. We consider an infection rate

δ = 1.5 × 10−4. All the parameter values correspond to realistic

situations.

In this case, the best convergence bound is ρ̃=2357 animals,

whereas ρ = 1500. We consider a constant birth inflow equal

to S 0(0), in such a way that, in the absence of infection, the

6



flock population age distribution would be time invariant, with

a total population of 540 animals. Therefore the norm of the

solution of the linearized system is ‖x1‖X = 543.3 < max(ρ, ρ̃),

with r = 0.99 and r′ = 0.11. The best truncation error bound at

order 2 on x (resp. I) is equal to 1.17 (resp. 0.66). It is even

smaller at order 3 for which it is equal to 0.27 (resp. 0.15). This

is consistent with the evolution of the total number of infected

simulated and displayed in figure 2. The numerical truncation

error at order 2 on I for this example is found to be 0.3, which

is close to the computed upper bound.
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Figure 2: Total infected population K(I) w.r.t. time. The solution of the nonlin-

ear problem (solid line) is compared to the series expansions at order 1, 2 and 3

(dotted lines), with ρ̃ = 2357 and ‖x1‖X = 543.3.

In this context, the approximation at order 2 is close enough,

so that the system can be simplified as S ≃ S 1 + S 2 and

I ≃ I1+ I2, as long the conditions of theorems 1-2 are met. This

offers quite an interesting perspective from the control point of

view. For instance, optimal herd management is usually per-

formed using the birth input and the mortality rate (culling) as

piecewise constant control input. Here, S 1, S 2, I1 and I2 are

explicit functions of the mortality rate and depend linearly on

the input flow, which allow the design of optimal management

policies by solving simple constrained optimization problems.

When increasing δ to reach the limit case where ρ̃ = ‖x1‖X
(δ ≃ 6.5 × 10−4), the series seems to be still convergent on

[0,T = 4] and beyond, but 5 terms are needed to approx-

imate the original system. Figure 3 displays trajectories for

ρ̃ = 295 < ‖x1‖X (δ ≃ 12 × 10−4). The series exhibits an

extremely slow divergent behavior on [0,T = 4], visible only

around order 12. This divergent behavior increases very rapidly

with δ and corresponds to the onset of a persistent epidemic.

Hence, on this example, our method provides a conservative

convergence bound estimate. Nonetheless, in practice, these

bounds characterize situations where a low order truncation is

possible and where the corresponding remainder estimate is ac-

curate.

7. Conclusion

We have established a sufficient convergence criterion and

truncation error bound for generalized Volterra series expan-

sions of a class of infinite dimensional systems that are analytic

in state and affine in input. We have also established the cor-

responding algorithms. Although these bounds are not optimal

in general, the method provides a general framework that can
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80
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Figure 3: Total infected population K(I) w.r.t. time (solid line) and series ex-

pansions at order 1, 2, 5, 9 and 12 (dashed lines), with ρ = 295 < ‖x1‖X.

be adapted to specific systems. This was illustrated in the case

of quadratic-bilinear systems. Finally, a simulation example in

animal epidemiology was presented that demonstrate the accu-

racy and utility of the method.
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[18] T. Hélie, B. Laroche, Computation of convergence bounds for Volterra se-

ries of linear-analytic single-input systems, IEEE T Automat Contr 56 (9)

(2011) 12p.

[19] R. F. Curtain, H. J. Zwart, An introduction to Infinite-dimensional Linear

Systems Theory, Springer, 1995.

[20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Dif-

ferential Equations, vol. 44 of Applied mathematical sciences, Springer,

1983.

7



[21] S. Boyd, L. O. Chua, C. A. Desoer, Analytical Foundations of Volterra

Series, IMA J Math Control I 1 (1984) 243–282.

[22] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University

Press, 2009.
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